Integrated Experimental , Atomistic , and Microstructurally Based Finite Element Investigation of the Dynamic Compressive Behavior of 2139 Aluminum

نویسندگان

  • K. Elkhodary
  • Lipeng Sun
  • Douglas L. Irving
  • Donald W. Brenner
  • G. Ravichandran
  • M. A. Zikry
چکیده

The objective of this study was to identify the microstructural mechanisms related to the high strength and ductile behavior of 2139-Al, and how dynamic conditions would affect the overall behavior of this alloy. Three interrelated approaches, which span a spectrum of spatial and temporal scales, were used: (i) The mechanical response was obtained using the split Hopkinson pressure bar, for strain-rates ranging from 1.0 10 3 s to 1.0 104 s 1. (ii) First principles density functional theory calculations were undertaken to characterize the structure of the interface and to better understand the role played by Ag in promoting the formation of the phase for several -Al interface structures. (iii) A specialized microstructurally based finite element analysis and a dislocation-density based multiple-slip formulation that accounts for an explicit crystallographic and morphological representation of and precipitates and their rational orientation relations were conducted. The predictions from the microstructural finite element model indicated that the precipitates continue to harden and also act as physical barriers that impede the matrix from forming large connected zones of intense plastic strain. As the microstructural FE predictions indicated, and consistent with the experimental observations, the combined effects of and , acting on different crystallographic orientations, enhance the strength and ductility, and reduce the susceptibility of 2139-Al to shear strain localization due to dynamic compressive loads. DOI: 10.1115/1.3129769

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical crashworthiness investigation of hybrid composite aluminum tubes under dynamic axial and oblique loadings

This research deals with axial and oblique impact crash tests on simple and hybrid composite tubes. Axial and oblique impact tests have been generated on simple and hybrid composite tubes with one, two and three layers. A drop test rig was used to conduct the experiments. Furthermore, in order to gain more detailed knowledge about the crash process, finite element simulations of the experim...

متن کامل

Experimental and Finite Element Analyses of the Hydrostatic Cyclic Expansion Extrusion (HCEE) Process with Back-Pressure

It is generally known that severe plastic deformation processes with back pressure not only apply higher hydrostatic stress and more deformation compared to what a regular process can apply to a workpiece but also prevent surface defects in the workpiece during the process. Hydrostatic cyclic expansion extrusion (HCEE) was developed recently for processing long ultrafine-grained metals and allo...

متن کامل

Experimental and Numerical Investigation of Warm Deep Drawing Process of AA5052 Aluminum Alloy

Aluminum alloys have a high strength-to-weight ratio and proper anti-corrosion properties that are used in the automotive, shipbuilding and aerospace industries. The major problem with forming aluminum sheets is the low formability of aluminum sheets at room temperature. Therefore, in the present study, warm deep drawing (WDD) of AA5052-O aluminum alloy sheets with a thickness of 1mm was invest...

متن کامل

Dynamic Characteristics of Joined Steel and Carbon Fiber-Reinforced Plastic Tubes: Experimental and Numerical Investigation

The fundamental frequencies and mode shapes of steel and carbon fiber–reinforced plastic (CFRP) cylindrical shells with steel inserts were investigated using finite element analysis and modal testing. The free-free boundary condition was tested with modal testing using the roving hammer method and verified by finite element analysis using ABAQUS. The results show good agreement between the test...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009